

MASTER SANITARY SEWER REPORT

5 Ridges

Prepared for:

5 Ridges Development Company, Inc. 1 East Liberty, Suite 444 Reno, NV 89501

Prepared by:

Christy Corporation, Ltd. 1000 Kiley Parkway Sparks, Nevada 89436

May 2020

Introduction

This report summarizes estimated wastewater generation analysis for buildout development for the 5 Ridges project and final design calculations for backbone infrastructure. The purpose of this report is to analyze the proposed sanitary sewer lines for the backbone infrastructure 5 Ridges project site to determine direction of flow, sizing of the sewer lines and to develop a framework for future sewer reports within the 5 Ridges development as well as to determine the anticipated sewage contribution to the Spanish Springs Sewer Interceptor.

The project is located in the foothills on the west side of Spanish Springs Valley, Section 9, Township 20 North, Range 20 East, within the Northern Sparks Sphere of influence (NSSOI), Sparks, Nevada. The proposed development site is north of Highland Ranch Parkway and west of Pyramid Highway. Please reference the attached vicinity map in the appendix.

The 5 Ridges project is a single family and townhome development that will be developed in multiple phases. There are 10 villages and a remainder parcel currently envisioned for the buildout of 5 Ridges.

The current land plan for 5 Ridges identifies a buildout of 1241 single family and townhome units. A total of 158 units are anticipated to be townhomes.

Previous Studies

Sewer Model Update for the City of Sparks, by Atkins, In Progress

Methodology

The City of Sparks does not have an official design criteria requirement for sanitary sewer design flow determination. The method proposed is to use the peak flow rates and occupancy rates, below. Sewer mains are analyzed at 50% flow depth. The following design criteria were used for the preparation of this report:

Manning's Equation: Q=(1.49/n)AR^{2/3}S^{1/2}

Manning's Roughness Coefficient (n value)	0.014
Depth of flow pipe (d/D)	0.50
Main sewer lines (8" and 10")	300 gal/day/capita
Single Family Residential occupancy rate	3.0 capita/du
Multi-Family Residential occupancy rate	2.0 capita/du

The total sewer contribution in (gal/day) was converted to (MGD). Using this quantity sewer lines will be sized using the following Bentley Flow Master output:

8" diameter pipe at 0.4% minimum slope:	½ Full Pipe Discharge – 0.23 MGD
8" diameter pipe at 1%:	1/2 Full Pipe Discharge – 0.36 MGD
8" diameter pipe at 2%:	1/2 Full Pipe Discharge – 0.51 MGD
8" diameter pipe at 4%:	½ Full Pipe Discharge – 0.73 MGD
8" diameter pipe at 6%:	1/2 Full Pipe Discharge – 0.89 MGD
8" diameter pipe at 8%:	½ Full Pipe Discharge – 1.03 MGD
8" diameter pipe at 10%:	1/2 Full Pipe Discharge – 1.15 MGD
10" diameter pipe at 0.3% minimum slope:	1/2 Full Pipe Discharge – 0.36 MGD
10" diameter pipe at 1%:	½ Full Pipe Discharge – 0.66 MGD
10" diameter pipe at 2%:	½ Full Pipe Discharge – 0.93 MGD
10" diameter pipe at 4%:	1/2 Full Pipe Discharge – 1.31 MGD
10" diameter pipe at 6%:	½ Full Pipe Discharge – 1.61 MGD
10" diameter pipe at 8%:	1/2 Full Pipe Discharge – 1.86 MGD
10" diameter pipe at 10%:	1/2 Full Pipe Discharge – 2.08 MGD

Reference the appendix for all applicable calculations

Existing Sanitary Sewer System

The proposed site is located north and west of the existing 36" Spanish Springs Sewer Interceptor. The existing interceptor traverses the eastern boundary of the Kiley Ranch North development southeast of this site. Wastewater is conveyed to the Truckee Meadows Water Reclamation Facility (TMWRF) for treatment. The existing sewer network within Kiley Ranch extends from the interceptor through Kiley Ranch, and up Sparks Boulevard to the intersection of Sparks Boulevard, Pyramid Highway, and Highland Ranch Parkway and then up Highland Ranch Parkway terminating approximately 500 feet west of Pyramid Highway. The capacity of this infrastructure is discussed in the Exiting Sewer System section on following pages.

Wastewater Generation

The proposed 1241 units anticipated for buildout of 5 Ridges produce a peak flow of 1,070,000 gallons per day (gpd) or 1.07 million gallons per day (MGD). Project wastewater generation flows were calculated and are shown in the table below.

Land Use	Number of Units	Unit Flow (gal/unit/day)	Occupancy	Peak Flow (gpd)	Peak Flow (MGD)
Single Family					
Residential	1083	300	3	947,700	0.948
Villages 2, 3, 4, 5					
6, 7, 8, 9, & 10					
Townhomes	158	300	2	94.800	0.095
Villages 1A & 1B				,	
Total	1241			1,069,500	1.070

Table 1. 5 Ridges – Wastewater Generation

Proposed Sanitary Sewer System

The proposed sanitary sewer system will consist of 8" and 10" PVC mains with minimum velocities of 2 fps and maximum velocities of 15 fps. Minimum anticipated 8" pipe slopes will be 0.4% to maintain minimum velocities. Sewer mains of 8" and 10" diameter will be utilized to convey buildout flows from the project. The primary sewer mains will be contained in the north-south backbone road, Five Ridges Parkway, and the west leg of Antelope Ridge Parkway, proposed with the project. Sewer mains will be constructed in these roadway to convey wastewater to Highland Ranch Parkway. New sewer will be constructed in Highland Ranch Parkway from Five Ridges Parkway to approximately 500 feet west of the intersection of Pyramid Highway and Highland Ranch Parkway/Sparks Boulevard where the sewer main will connect to an existing 10" sewer main.

Sewer mains proposed within the backbone infrastructure for the development are sized to collect anticipated flows for full buildout of the 5 Ridges development. The backbone infrastructure for the project will serve all Villages and facilities within the development. Backbone roadways include Five Ridges Parkway and Antelope Ridge Parkway. New sewer within Highland Ranch Parkway is also sized pursuant to these calculations. Table 2 and the Contributing Area Map in the Appendix identify the total wastewater generated by Villages at primary nodes in the backbone infrastructure. The flow (Q) in each row of the table in the Node column represents the total cumulative peak sewer flow anticipated in the proposed sewer system at that point. With this flow information and the pipe capacities presented in the Methodology section above, the sewer mains have been sized to flow at less than ½ full flow at buildout.

Node	Downstream		I	Q	Q		
#	Node	CONTRIBUTING AREA	DU	capita /DU	capita	ADD MGD	NODE MGD
A2	A1	VILLAGE 8	142	3	426	0.128	0.128
A1	F3	VILLAGE 6	148	3	444	0.133	0.261
F4	F3	VILLAGES 8 & 9 & 10	287	3	861	0.258	0.258
F3	F2						0.519
F2	F1	VILLAGES 2 & 4	102	3	306	0.092	0.611
F1	H2	VILLAGES 3 & 5 & 7	404	3	1212	0.364	0.975
H2	H1	VILLAGE 1B	70	2	140	0.042	1.017
H1	POC	VILLAGE 1A	88	2	176	0.053	1.070
		ΣDU	1241			ΣQ	1.070

Table 2. 5 Ridges – Backbone Infrastructure Sewer Main Flows

The resultant sanitary sewer pipe network within the backbone infrastructure will consist of 8" sewer mains in Antelope Ridge Parkway and the portion of Five Ridges Parkway above Antelope Ridge Parkway and 10" sewer mains in Five Ridges Parkway below Antelope Ridge Parkway and in Highland Ranch Parkway.

Existing Sanitary Sewer System

Atkins is currently preparing an update to the City of Sparks Sewer Model. The sewer model addresses existing and buildout flows and pipe capacities for Sparks' existing public sewer system. The 5 Ridges development is identified in the buildout condition model being prepared by Atkins. Atkins has provided preliminary results of the sewer model that are included in the appendix to this report.

Atkins' Figure 1 (reference the appendix) presents the existing sewer pipe network that 5 Ridges will connect to. This system consists of 8" to 12" sewer mains in Sparks Boulevard. The main then turns and travels east on Kiley Parkway as a 15" main and is upsized to an 18" sewer interceptor at the intersection of David Allen Parkway and Kiley Parkway where it continues to Henry Orr Parkway where it turns south. The 18" interceptor terminates at the 36" Spanish Springs sewer interceptor.

Atkins' Figure 2 identifies contributory areas to buildout flows referenced in the appendix. These future flows incorporate groundwater infiltration in wet weather conditions as well as provide modeling of dry weather condition flows. In the analysis of new development, pipe capacity requirements for sewer mains and trunk mains (8" to 12") is typically limited to 50% full pipe flow and to 70% full pipe flow for sewer interceptors (pipe >15"). There is a single segment of 8" sewer main in Sparks Boulevard that is identified to be greater than 50% flow at buildout conditions during wet weather conditions. This section of 8" main is modeled to be at 37.9% full during dry weather conditions and 52.5% full during wet weather conditions. The slight exceedance of the 50% full design limit is relatively negligible in the wet weather peak flow condition and does not warrant upsizing of the existing sewer main for the development. As such all sewer mains, trunk mains, and interceptors identified in the model identify existing capacity for buildout of the 5 Ridges development.

Conclusion

This master final sanitary sewer report defines the overall wastewater generation for 5 Ridges and provides sizing for sewer infrastructure within the backbone roadway system for the development. This study has been prepared in compliance with the existing Sparks sewer modeling and standard engineering practices. The project will not have a negative impact on existing sewer system conveyance capacities.

An individual Final Sanitary Sewer Study will be prepared for each of the Villages within the 5 Ridges development with each final map. As the site sewers to the Truckee Meadows Wastewater Reclamation Facility (TMWRF), each final map will be required to obtain sewer will serve letters from the City of Sparks to reserve treatment capacity prior to recordation or the creation of residential lots.

Appendices

Vicinity Map 5 Ridges Land Use Plan Variable Slope Pipe Capacities City of Sparks Sewer Model (Preliminary), Atkins Figure 1, Kiley Ranch Area Sewer Network – Vicinity Map Figure 2, Kiley Ranch Area Parcels Map (Buildout Condition) Sparks Sewer Infrastructure Buildout Capacities Contributing Area Map

Label	Roughness Coefficient	Channel Slope (ft/ft)	Normal Depth (in)	Diameter (in)	Discharge (gal/day)	Percent Full (%)	Velocity (ft/s)
8in SS Main @ 10%	0.014	0.10000	4	8	1146628	50.0	10.16
8in SS Main @ 8%	0.014	0.08000	4	8	1025575	50.0	9.09
8in SS Main @ 6%	0.014	0.06000	4	8	888174	50.0	7.87
8in SS Main @ 4%	0.014	0.04000	4	8	725191	50.0	6.43
8in SS Main @ 2%	0.014	0.02000	4	8	512788	50.0	4.55
8in SS Main @ 1%	0.014	0.01000	4	8	362596	50.0	3.21
8in SS Main @ 0.40% Minimum Slope	0.014	0.00400	4	8	229326	50.0	2.03
10in SS Main @ 10%	0.014	0.10000	5	10	2078974	50.0	11.80
10in SS Main @ 8%	0.014	0.08000	5	10	1859491	50.0	10.55
10in SS Main @ 6%	0.014	0.06000	5	10	1610367	50.0	9.14
10in SS Main @ 4%	0.014	0.04000	5	10	1314859	50.0	7.46
10in SS Main @ 2%	0.014	0.02000	5	10	929746	50.0	5.27
10in SS Main @ 1%	0.014	0.01000	5	10	657429	50.0	3.73
10in SS Main @ 0.30% Minimum Slope	0.014	0.00300	5	10	360089	50.0	2.04

5 Ridges SS Analysis - Variable Pipe Size and Slope Report

Christy Corporation

Bentley Systems, Inc.

Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]

11/15/2019 11:55:00 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Kiley Ranch Area							
			d/D Values				
MOID	Pipe Size (ft)	Slope	EX_DWF	EX_WWF	FUT_DWF	FUT_WWF	
From SSL021118 to SSL020052							
SSL021118	0.67	0.022	0.000	0.055	0.321	0.432	
SSL021119	0.67	0.026	0.000	0.070	0.315	0.426	
SSL021120	0.67	0.027	0.000	0.077	0.297	0.403	
SSL021121	0.67	0.041	0.000	0.110	0.379	0.525	
SSL021123	0.83	0.006	0.000	0.096	0.310	0.428	
SSL021124	0.83	0.027	0.000	0.087	0.257	0.350	
SSL021125	1.00	0.016	0.000	0.071	0.201	0.273	
SSL021126	1.00	0.046	0.000	0.097	0.230	0.320	
SSL020080	1.25	0.005	0.000	0.105	0.229	0.325	
SSL020073	1.25	0.005	0.000	0.108	0.226	0.321	
SSL020072	1.25	0.004	0.015	0.124	0.270	0.359	
SSL020069	1.50	0.005	0.026	0.118	0.270	0.342	
SSL020068	1.50	0.004	0.027	0.125	0.286	0.363	
SSL020067	1.50	0.005	0.024	0.111	0.248	0.314	
SSL020066	1.50	0.013	0.023	0.110	0.239	0.303	
SSL020065	1.50	0.005	0.026	0.124	0.268	0.341	
SSL020064	1.50	0.005	0.025	0.123	0.263	0.337	
SSL020063	1.50	0.007	0.021	0.103	0.216	0.276	
SSL020062	1.50	0.030	0.022	0.108	0.220	0.281	
SSL020061	1.50	0.004	0.026	0.134	0.273	0.352	
SSL020060	1.50	0.004	0.026	0.135	0.273	0.352	
SSL020059	1.50	0.005	0.028	0.134	0.271	0.352	
SSL020058	1.50	0.005	0.032	0.142	0.287	0.373	
SSL020056	1.50	0.003	0.034	0.151	0.299	0.388	
SSL020055	1.50	0.003	0.035	0.159	0.314	0.409	
SSL020054	1.50	0.004	0.028	0.129	0.254	0.331	
SSL020053	1.50	0.035	0.019	0.085	0.161	0.207	
SSL020052	1.50	0.056	0.148	0.263	0.451	0.594	
I	From SSL02007	7 to SSI	020074 (S	SL020078 r	not modeled)	
SSL020077	0.83	0.005	0.000	0.061	0.093	0.165	
SSL020076	0.83	0.004	0.000	0.080	0.094	0.175	
SSL020075	0.83	0.005	0.000	0.094	0.094	0.182	
SSL020074	0.83	0.004	0.000	0.129	0.223	0.342	

2016 SSMP d/D Values

Notes:

EX_DWF: Existing Condition Dry Weather Flow Scenario EX_DWF: Existing Condition Wet Weather Flow Scenario

FUT_DWF: Buildout Condition Dry Weather Flow Scenario

FUT_WWF: Buildout Condition Wet Weather Flow Scenario

SSL020078 was not modeled in the 2016 SSMP

Label	Roughness Coefficient	Channel Slope (ft/ft)	Normal Depth (in)	Diameter (in)	Discharge (gal/day)	Percent Full (%)	Velocity (ft/s)
8in SS Main @ 10%	0.014	0.10000	4	8	1146628	50.0	10.16
8in SS Main @ 8%	0.014	0.08000	4	8	1025575	50.0	9.09
8in SS Main @ 6%	0.014	0.06000	4	8	888174	50.0	7.87
8in SS Main @ 4%	0.014	0.04000	4	8	725191	50.0	6.43
8in SS Main @ 2%	0.014	0.02000	4	8	512788	50.0	4.55
8in SS Main @ 1%	0.014	0.01000	4	8	362596	50.0	3.21
8in SS Main @ 0.40% Minimum Slope	0.014	0.00400	4	8	229326	50.0	2.03
10in SS Main @ 10%	0.014	0.10000	5	10	2078974	50.0	11.80
10in SS Main @ 8%	0.014	0.08000	5	10	1859491	50.0	10.55
10in SS Main @ 6%	0.014	0.06000	5	10	1610367	50.0	9.14
10in SS Main @ 4%	0.014	0.04000	5	10	1314859	50.0	7.46
10in SS Main @ 2%	0.014	0.02000	5	10	929746	50.0	5.27
10in SS Main @ 1%	0.014	0.01000	5	10	657429	50.0	3.73
10in SS Main @ 0.30% Minimum Slope	0.014	0.00300	5	10	360089	50.0	2.04

5 Ridges SS Analysis - Variable Pipe Size and Slope Report

Christy Corporation

Bentley Systems, Inc.

Bentley FlowMaster V8i (SELECTseries 1) [08.11.01.03]

11/15/2019 11:55:00 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

			275.502.8552 M christynv.com	
REV. DATE DESCRIPTION				
			CDAPKS NEV/AD	
CONTRIBUTING AREA MAP	5 RIDGES DEVELOPMENT	SANITARY SEWER MASTER STUDY		
Designs herein a copyrig duplicat federal Date: Designe Checke Job No.	and draw are protec ht Title 17 ion is a vi law. ed by: d by:	vings co ted und Unauth tolation	ontaine er US0 norizec of state 05/26	ed C I e and /2020 DGB DLM 2.007
SHEF	SS	5-	1	1

TO PYRAMID HIGHWAY